

Recomendação Técnica Metodologia para delimitação das "áreas de elevado risco de erosão hídrica do solo"

A Resolução do Conselho de Ministros (RCM) nº 81/2012 de 3 de outubro, retificada pela Declaração de retificação nº 71/2012 de 30 de novembro, aprova as Orientações Estratégicas de âmbito Nacional e Regional (OENR) para delimitação da Reserva Ecológica Nacional (REN) a nível municipal previstas nos artigos 5.º, 7.º e 8.º do Decreto-Lei n.º 166/2008, de 22 de agosto, alterado e republicado pelo Decreto-Lei n.º 239/2012, de 3 de outubro (RJREN).

Da aplicação dos critérios para a delimitação, constantes da Secção III da referida RCM, resultaram diversos pedidos de esclarecimento adicionais por parte de autarquias e de comissões de coordenação e desenvolvimento regional (CCDR), respeitantes à metodologia para a delimitação das "áreas de elevado risco de erosão hídrica do solo".

Considerando as funções cometidas que lhe estão cometidas pelo artigo 28.º do RJREN, a CNREN elaborou a presente recomendação técnica complementar ao conteúdo da RCM no que se refere ao critério para a delimitação daquela tipologia de área REN, fornecendo os esclarecimentos necessários à sua boa compreensão nos aspetos fundamentais de adequação da metodologia à natureza da REN e informação de base disponível.

1. Adequação da metodologia

O critério para a delimitação das áreas de elevado risco de erosão hídrica do solo, aprovado pela RCM n.º 81/2012, resulta de metodologia desenvolvida pela APA, I.P, com o objetivo de estimar a erosão real do solo.

A metodologia foi sujeita a validação de campo em onze bacias hidrográficas, tendo a confrontação dos resultados obtidos com o volume de sedimentos depositados em igual número de albufeiras tido um resultado muito satisfatório.

A metodologia foi publicada em documentos científicos e técnicos e validada na sequência dos incêndios dos anos de 2003 e 2005.

A metodologia descreve com grande rigor o fenómeno da erosão hídrica do solo, podendo dela resultar áreas de menor dimensão do que as originadas pela aplicação de outras metodologias e critérios, designadamente dos utilizados nas delimitações de REN vigentes, baseadas, por norma, apenas nos declives das encostas ou da articulação dos declives com a erodibilidade média dos solos.

A experiência prática de aplicação desta metodologia em trabalhos de delimitação de REN em diferentes concelhos tem demonstrado que a aplicação dos fatores relativo à ocupação do solo e antrópico à globalidade do território municipal pode ser difícil. A heterogeneidade dos territórios, a mutabilidade do fator C (que espelha a situação no momento da aplicação da metodologia e na ausência de práticas culturais adequadas) ou a ocorrência de fenómenos imponderáveis e a dificuldade de isolar manchas homogéneas de densidade populacional no

concelho (atendendo às diferenças do padrão de povoamento verificadas e uma vez que a consideração de um valor ponderado por concelho ou mesmo a nível de freguesia se ter revelado insatisfatório) dificultam a aplicação destes fatores.

Todavia, sendo os usos e atividades territoriais determinantes na mitigação ou no agravamento do risco de erosão, os fatores referidos não são despiciendos, devendo ser usados como medida da adequação dos usos ao território.

2. Informação de base disponível

A Equação Universal de Perda do Solo (EUPS) é definida por:

$$A = 2.24\overline{R}KLSCP$$
 (Eq. 1)

Onde:

2,24 – é uma constante que visa a conversão das unidades anglo-saxónicas para o Sistema Internacional (SI);

A - erosão específica do solo (ton/ha.ano);

 \overline{R} - fator de erosividade da precipitação que pode ser determinado a partir das estimativas disponibilizadas no portal do SNIRH (http://snirh.pt, opção Atlas da Água > Atlas Nacionais > Descarregar Temas > Temas do Atlas > Elem_Meteorologicos), ponderadas pela área em análise;

K –fator relativo à erodibilidade dos solos, pode ser estimado a partir da cartografia de solos a diferentes escalas, com classificação apropriada para estimar a perda do solo, é proposto por Pimenta (1999), disponível em http://snirh.pt/snirh/download/relatorios/factorC K.pdf;

LS –fator topográfico, adimensional, que poderá ser determinado pela expressão indicada na RCM n.º 81/2012 ou através de ferramenta disponível em Sistema de Informação Geográfica (SIG), ponderando o erro inerente ao SIG adotado, o qual deverá ser ajustado à equidistância das curvas de nível da cartografia de referência usada, por exemplo a referenciada à escala de 1:10000;

C –fator relativo à ocupação do solo, baseado na correspondência entre as cartas *Corine Land Cover* 2000 ou 2006 (CLC, referida à escala de 1:100 000) e Carta de Ocupação do Solo 1990 ou 2007 (COS, referenciada à escala de 1:25 000) e o valor de C proposto por Pimenta (1999);

P – fator antrópico, baseado na densidade de habitantes por concelho, retirada dos Censos do INE e agrupada nas 20 classes indicadas no Quadro 1, ou por freguesia, ou ainda baseado na valoração de ações de aceleração ou de desaceleração do fenómeno erosivo, como as indicadas a título exemplificativo no Quadro 2, ou ainda de outras ações mais adequadas ao território em estudo.

24-09-2013|v.2

Quadro 1 – Valor de P por classe de densidade populacional ao concelho

Densidede nanulasional Fotos D		
Densidade populacional	Fator P	
(hab/km2)	%	
0 - 8,81	5	
8,82 – 13,38	10	
13,39 – 17,09	15	
17,10 - 21,94	20	
21,95 – 28,84	25	
28,85 – 34,88	30	
34,89 – 41,45	35	
41,46 – 50,48	40	
50,49 – 64,8	45	
64,81 – 84,82	50	
84,83 – 115,54	55	
115,55 – 154,06	60	
154,07 – 206,9	65	
206,91 – 281,27	70	
281,28 – 434,22	75	
434,23 – 718,28	80	
718,29 – 1286,35	85	
1286,36 – 1791,82	90	
179,83 – 3515,88	95	
3515,89 – 8100,49	100	

Quadro 2 – Exemplos de ações de aceleração ou desaceleração do fenómeno erosivo

Tipos de ação	Efeitos	Ações
Aumento das atividades humanas e da ocupação edificada do solo	Ações aceleradoras da erosão	Destruição da vegetação, desnudação do solo, práticas culturais que causem perda ou degradação do solo, coberto vegetal que não assegure eficiente proteção do solo, incêndios florestais
Métodos de controlo da erosão	Ações desaceleradoras da erosão	Planeamento e gestão da atividade agrícola (solo o mais coberto possível no período de maior precipitação)
		Prevenção e defesa contra a erosão (exploração e prática cultural por curvas de nível e culturas em faixas alternadas)
		Reconstituição ou recuperação de solos erodidos (promoção da fixação do solo pela vegetação e suspensão das lavouras)
		Conservação de solos (adoção de soluções mais adequadas para proteção de taludes e aterros em obras viárias, reflorestação, controlo da erosão e da produção de sedimentos nas áreas urbanas; correção torrencial; albufeiras de regularização)

A Perda de Solo Especifico (Pse), definida por:

$$Pse = SDR \times A$$
 (Eq. 2)

Em que SDR é a Razão de Cedência dos Sedimentos (SDR), expressa em %, e definida por:

$$SDR = 0.332 A_b^{-0.2236}$$
 (Eq. 3)

24-09-2013|v.2

Onde:

A_b - Área de drenagem (km²) que pode corresponder à bacia hidrográfica ou a outra área específica.

Dá a medida da suscetibilidade ao risco de erosão hídrica do solo em termos qualitativos, considerando-se como elevada a perda de solo igual ou superior a 55 ton/ha.ano; baixa, se a perda de solo for inferior a 25 ton/ha.ano e média se a perda de solo se situar entre os dois valores referidos.

3. Recomendação técnica

A metodologia e os critérios aprovados pela RCM n.º 81/2012, de 3 de outubro, para a delimitação das "áreas de elevado risco de erosão hídrica do solo", recorre à EUPS adaptada ao território continental para o cálculo da Erosão Especifica do Solo (Equação 1) e à estimativa da Razão de Cedência dos Sedimentos (Equação 3) que permite determinar a Perda de Solo Especifico (Pse), medida da suscetibilidade do solo ao risco de erosão hídrica.

Os cinco fatores considerados na EUPS possuem pesos iguais. O fator erosividade da precipitação (\overline{R}) expressa um índice de intensidade de precipitação, determinado com séries temporais históricas. O fator erodibilidade (K) expressa, a partir das características pedológicas, a capacidade do solo sofrer erosão a partir de forças que causam a desagregação e o transporte de suas partículas. O fator topográfico (LS) expressa a relação entre o comprimento e o declive de uma encosta. O fator relativo à ocupação do solo (C) expressa a ocupação do solo e o fator antrópico (P) a ação humana.

Os fatores \overline{R} , K e LS são facilmente obtidos partindo dos dados e da informação disponível para todo o território continental. Os fatores C e P são mutáveis no tempo e no espaço, o que dificulta a sua determinação, sobretudo em territórios com grande heterogeneidade. Todavia, para determinação do fator C existe informação disponível que considera a ocupação do solo identificada em cartografia existente, desde os usos urbanos aos usos agrícolas e florestais, incluindo neste as práticas culturais associadas. Também para o fator P é determinável, adotando a informação mais adequada quer ao território em estudo quer ao conhecimento das ações humanas sobre ele. Esta informação encontra-se disponível em Pimenta (1999) muito embora possa ser adotada outra, desde que proveniente de estudos idóneos.

Contudo, tendo presente a dificuldade em determinar um valor que traduza a mutabilidade e heterogeneidade associada aos fatores relacionados com o uso do solo e a atividade humana, e por forma a assumirem um carácter preventivo, podem considerar-se na aplicação da EUPS, os valores constantes que melhor traduzam os fatores C e P.

A informação a utilizar no cálculo dos fatores da EUPS deve ser a mais atualizada.

24-09-2013|v.2